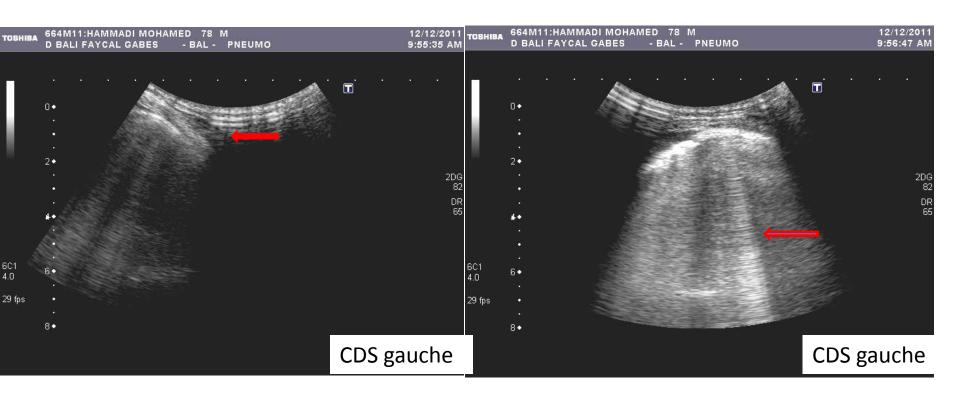

Mr Hammadi M...75 ans m'a consultée le 12/12/11 pour dyspnée progressive depuis 45 jours. .. DOULEUR THORACIQUE Gauche...Malaise

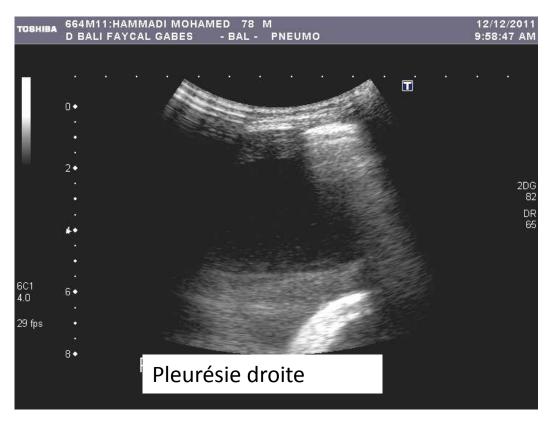
• ANTECEDENTS ET TARES :tabac 40pa.Tousseur chronique.

EXAMEN PHYSIQUE :

- Tachypneique.TA: 12/8 RC: 131 /min .Sat: 97 %.
- QQ ronchus et sibilances


• E.C.G:

- HBAG-Q V1-V2-Absence de croissance de r v1-v2-
- **EXAMENS BIOLOGIQUES**:
- DEXTRO: 97 mg/l
- NFS: GB = 10800 10 3/mm3- HB= 12,60 gr/l PLAQUETTES =211 103/mm3
- CREATININE:9,30
- IONO: NA: 139 K: 4,5 CL:102
- TROPONINE:0,16
- PEPTIDE NATIURETIQUE DE TYPE B:24867


Mr Hammadi

ULTRASONGRAPHIE THORACIQUE

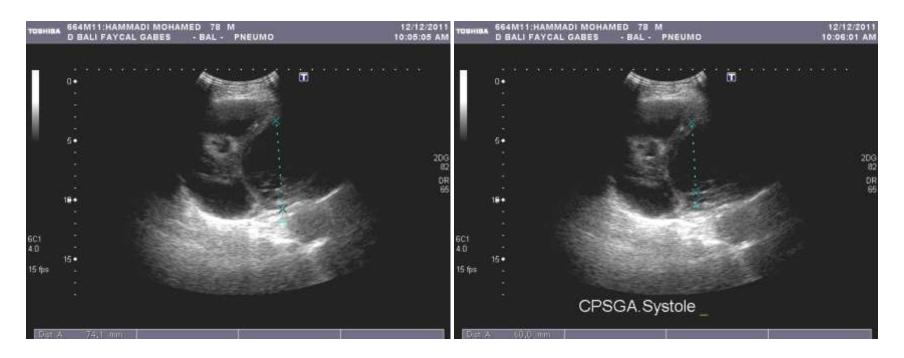
Le cul de sac costeau diaphragmatique gauche est le siège d'une **pleurésie**. L' interface contient pleuroaériquede minime interruptions par endroit une disposition verticale et inépuisable (Rin Dowin.Ligne B).=SYNDROME INTETIELLE.

Il existe A DROITE une pleurésie de moyenne abondance avec surface pulmonaire repoussée (Ponction echoguidee 300cc)

PONCTION PLEURALE :

- •
- ASPECT:Liquide clair après centrifugation
- PROTIDE:9gr/l
- RIVALTA:négatif
- HEMATIE:400
- LEUCOCYTE:91
- Neutrophiles:10
- LYMPHO(%):90
- Absence de cellulesnéoplasique

LE QUADRILLAGE SOUS DIAPHRAGMATIQUE:


VEINE CAVE INFEREIUR. Dilatée(18mm), immobile et incompressible VEINE SUSHEPATIQUES. Dilatée(Diametre = 9 mm a 3 cm de la VCI); Présence d'ascite.

<u>L'ECHOCARDIO MONTRE : COUPE PARASTERNALE GAUCHE GRAND AXE:</u>

VG :Dilatée ET De Contractilité altéré (DTD=.74mm-DTS=. 63mm)-Fraction de Raccourcissement du VG(13%)-

Conclusion:OEDEME PUMONAIRE

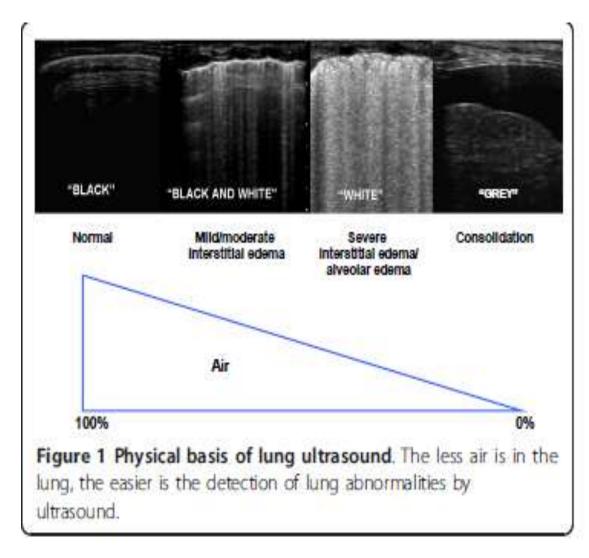
VG DILATEE FONCTION SYSTOLIQUE ALTEREE COMPOSANTE CARDIAQUE DROITE

CONCLUSION

• INSUFUSANCE CARDIAQUE GLOBALE SUR CARDIOPATHIE ISCHEMIQUE CHEZ UN BPCO

L'ère moderne des ultrasons du poumon

- ➤ Pendant de nombreuses années le poumon(aérés) a été considéré comme interdit pour des ultrasons.
- ➤ Quand l'air est remplacée par de l'eau ou de la fibrose (en sous pleurale ou aux nivaux des septas intérlobaire) ;les ultarsons son réfléchit créant des artefacts de réverbération


(Queue de comète, lignes B)

Les ligne B structure hypéréchogéne; verticale a point de départ pleurale s'étendant en profondeur (semblable au laser), synchrone a la respiration. Quant il sont multiples (signe du panneau)

-> syndrome intértitielle

- ➤ Quand le contenu aérien est complètements remplacée (consolidations de poumon)
 - ->Hépatisation

Informations fournies par les artefacts : Nouvelle approche

Gargani Cardiovascular Ultrasound 2011, 9:6

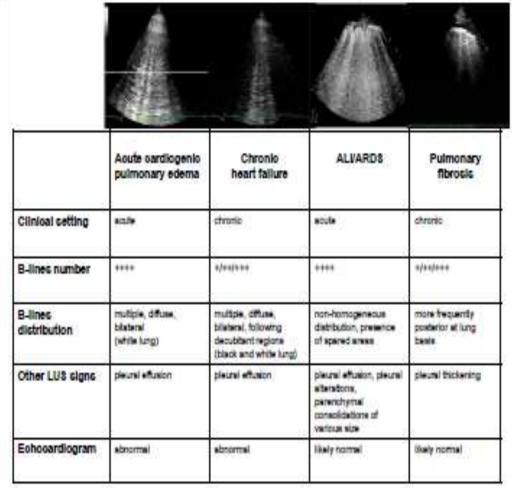
Ultrasons de poumon : un nouvel outil pour le cardiologue (1)

- En présence d'eau extravasculaire les ultrasons sont réfléchis par l'oedème sous pleurale et les septa interlobulaire épaissi.
- Cette réflexion crée les artefacts (de réverbération ou en queue de comète), appelés des lignes B ou des comètes tail-Arthefact,
- Lorsqu'elle sont nombreux il témoignent de l'existence d' un syndrome interstitielle (2)(3).
- Une corrélation avec l'eaux extravasculaire (évalué par radiographie thoracique) et le nombre de B-lignes détectées a été établie (4).
- (1) Gargani Cardiovascular Ultrasound 2011, 9:6
- http://www.cardiovascularultrasound.com/content/9/1/6 (27 February 2011)
- (2). Targhetta R,. J Ultrasound Med 1994, 13:381-8.
- (3). Lichtenstein DA,. Am J Respir Crit Care Med 1997, 156:1640-1646.
- (4). Jambrik Z. Am J Cardiol 2004, 93:1265-70.

La quantification des lignes B par ultrasons est une technique fiable pour l'évaluation de la congestion pulmonaire

- L'augmentation du nombre des lignes B est corrélée avec la classification fonctionnelle de la Dyspnée(NYHA) (1)
- Le nombre des lignes B est corrélée avec celui des lignes B de Kerly et aux score de l'eau pulmonaire radiologique.(2)
- Bonne corrélation avec l'eaux extravasculaire déterminée par méthode(invasive) de thérmodilution (3)
- Bonne corrélation avec la sévérité du dysfonctionnement diastolique quelque

soit le nivaux du dysfonctionnement systolique. (1)


- (1) Frassi F,. Eur J Echocardiogr 2007, 8:474-9
- (2) Jambrik Z. Am J Cardiol 2004, 93:1265-70.
- (3) Agricola E.Chest 2005, 127:1690-5.

SYNDROME INTERTITELLE ECHOGRAPHYQUE

Les lignes B sont corrélée aux épaississement sous pleuraux et des septats interlobulaire par oedème ou fibrose (1).

Diagnostic différentiel de la dyspnée (2)

- ➤Œdème aigue due poumon
- ➤ Insuffisance cardiaque chronique
- **≻Œdème lésionnelle/SDRA**
- > Fibrose pulmonaire

ALI = scule lung injury; ARDS = scule respiratory distress syndrome; LUS = lung ultrasound.

Figure 5 How to distinguish different etiologies of interstitial syndrome by lung ultrasound.

Échographie cardiopulmonaire Intégrée

❖*Pour un niveau de dysfonctionnement cardiaque donné, la réponse du lit vasculaire pulmonaire est variable; certain patients asymptomatiques, vont décompenser et exigent un traitement plus agressif

**Quant le cœur est normale (Fonction systolique, diastolique; absence de valvulopathie);

la présence de lignes B est en faveur de

☐ Fibrose pulmonaire/SDRA

S'il sont multiples, diffuses, bilatérales

□ Poumon normale / processus pathologique

(pneumonie, contusion, embolie; pleurésie; neoplasie..) En cas de de lignes B multiples mais focaux

❖*Dans les syndromes coronaires aigus;

l'évaluation par les lignes B de la congestion pulmonaire est précoce et a une valeur pronsotique

❖*La résolution de lignes B témoin de la déperdition liquidienne a été utilisée pour adapter le traitement .Leur persistance aux décours d'une hospitalisation est uns signe de mauvais pronostique

	Clinical applications	References	Level of evidence
Acute dyspnea	Differential diagnosis of cardiogenic vs non-cardiogenic dyspnea	11, 12	*
Chronic heart fallure	Assessing and grading congestion	6, 7, 9, 10, 22, 24	*
	Tallor therapy	13	*
ALI/ARDS	Early diagnosis Differential diagnosis with cardiogenic pulmonary edema Lung recruitment evaluation	8 38 42, 43	*
HAPE	Pre-clinical detection	40, 41	☆
Dialysis	Lung fluid dynamic evaluation	30, 31	☆
Acute coronary syndromes	Prognostic stratification	34, 35	*
Stress-echo	Identification of alveolar- capillary membrane stress failure, as sign of overt heart failure	22	☆

ALI = acute lung injury; ARDS = acute respiratory distress syndrome; HAPE = high aittude pulmonary edema. Green star = recommendation papers, statements by scientific communities. Yellow star = original papers on ISI journals.

Figure 7 Overview of the main clinical applications of lung ultrasound for the cardiologist.

Échographie cardio-pulmonaire Intégrée (Références bibliographiques)

- .6. Lichtenstein DA,. Am J Respir Crit Care Med 1997, 156:1640-1646.
- 7. Jambrik Z,. Am J Cardiol 2004, 93:1265-70.
- 8. Gargani L,. Crit Care Med 2007, 35:2769-74.
- 9. Agricola E, Chest 2005, 127:1690-5.
- 11. Gargani L,. Eur J Heart Fail 2008, 10:70-7.
- 12. Lichtenstein D, Intensive Care Med 1998, 24:1331-4.
- 13. Volpicelli G, Am J Emerg Med 2008, 26:585-91
- 22. Agricola E,. J Am Soc Echocardiogr 2006, 1:457-63.
- 24. Gheorghiade M, Eur J Heart Fail 2010, 12:423-33.
- 30. Mallamaci F. JACC Cardiovasc Imaging 2010, 3:586-94.
- 31. Noble VE. Chest 2009,135:1433-9.

- 32. Yu CM,. Circulation 2005, 112:841-8.
- 33. Adams KF JrHeart J 2005, 149:209-16.
- 34. Frassi F,. J Card Fail 2007, 13:830-5
- 35. Bedetti G, Am J Cardiol 2010, 106:1709-16
- 38 .Copetti R, Cardiovasc Ultrasound 2008, 6:16.
- 40. Pratali L. Crit Care Med 2010, 38:1818-23.
- 41. Frassi F,. J Am Soc Echocardiogr
- 2008, 21:1150-5.
- 42. Bouhemad B. Am J Respir Crit Care Med 2010.
- 43. Bouhemad B,. Crit Care Med 2010, 38:84-92.